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ARTICLE INFO ABSTRACT

Keywords: Transcriptomic studies are facilitating the search for the molecular bases of adaptation in natural populations,
Glycolysis but the impact of these differences in mRNA content on animal physiology are often unknown. One way to
GchOge“OI}’SiS determine if molecular changes have the potential to influence animal physiology and performance is to test for
fil‘i/:rogenesm correlated changes at higher levels of biological organization, including enzyme activity. Here, we measure the

activities of carbohydrate metabolism enzymes to test if previously documented genetic and transcriptomic
variation between ‘dwarf’ and ‘normal’ Lake Whitefish ecotypes are associated with corresponding changes in
enzyme activity (measured as maximal rate, Vy,,y) in liver and skeletal muscle. We use laboratory-reared fish
from the same populations as prior transcriptomic studies and find that white muscle mRNA content is a good
predictor of glycolytic and glycogen metabolism enzyme activity, and dwarf whitefish have evolved higher
activities than normal whitefish. However, the differences in hepatic mRNA content found between ecotypes in
prior studies are not associated with comparable changes in enzyme activity. For example, dwarf whitefish have
lower enzyme activities, but higher transcript abundances for two glycolytic enzymes compared to normal
whitefish. Overall, we find that transcriptomic studies successfully highlight evolutionary variation in enzyme
activities, but not always in the direction predicted, indicating that a variety of tissue-specific regulatory me-
chanisms contributed to the evolution of energy metabolism in Lake Whitefish.

White muscle
Local adaptation
Coregonus clupeaformis

1. Introduction translational mechanisms (e.g. Khan et al., 2013; Battle et al., 2015).

Therefore, it is important to test if changes in mRNA abundance are

A major goal in comparative physiology is to understand the me-
chanisms linking genotype to phenotype (Mykles et al., 2010). In par-
ticular, evolutionary physiologists are interested in determining how
genetic and molecular variation contributes to differences in phy-
siology, performance and fitness within and among populations and
species (Barrett and Hoekstra, 2011; Savolainen et al., 2013). A
common approach to detecting intra-specific molecular variation has
been to measure transcriptomic divergence and then identify candidate
genes, pathways and biochemical networks associated with ecologi-
cally-important phenotypic divergence (Pavey et al., 2010; Alvarez
et al., 2015; Pardo-Diaz et al., 2015). However, evolutionary variation
in mRNA content is often buffered at the level of protein abundance and
differences in protein abundance can arise via translational or post-

associated with comparable changes in protein content, enzyme ac-
tivity, and cellular function among populations and species when
studying the molecular bases for phenotypic evolution (Dalziel et al.,
2009; Diz et al., 2012; Evans, 2015). Agreement between changes in
gene expression and enzyme activities supports the hypothesis that
transcriptomic variation has the potential to influence physiology and
performance, but is rarely tested among populations of wild, non-model
organisms (but see Pierron et al., 2009; Rees et al., 2011; Nikinmaa
et al., 2013; Rokyta et al., 2015).

The Lake Whitefish (Coregonus clupeaformis) is one species for which
genomic and transcriptomic studies have detected extensive molecular
variation associated with local adaptation and ecological speciation
(Bernatchez et al., 2010). The Lake Whitefish is a freshwater, salmonid

Abbreviations: ALDO, aldolase; GPI, phosphoglucose isomerase; PFK, phosphofructokinase; TPI, triosephosphate isomerase; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; PK,
pyruvate kinase; LDH, lactate dehydrogenase; CK, creatine phosphokinase; PYG, glycogen phosphorylase; GYS, glycogen synthase; GPD, glycerol 3 phosphate dehydrogenase
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fish found in lakes and rivers across North America (Scott and
Crossmann, 1998). Much of the species' current distribution was cov-
ered by ice during the Pleistocene glaciation, separating populations
into different refugia for up to ~ 60,000 years (Bernatchez and Dodson,
1990, 1991; Pigeon et al., 1997; Jacobsen et al., 2012; Rougeux et al., in
press). When the glaciers retreated (~12-20,000 years ago), several
lineages came into secondary contact and have since undergone con-
tinued genetic and phenotypic divergence, leading to the evolution of
the limnetic, ‘dwarf’ ecotype from an ancestral epi-benthic, ‘normal’
ecotype (Bernatchez et al., 2010). The dwarf ecotype has evolved re-
peatedly, and independently, across the species range (Vuorinen et al.,
1993; Bernatchez et al., 1996; Pigeon et al., 1997), suggesting a strong
role of natural selection in evolutionary divergence.

In lakes within the St. John River Basin (Maine, USA and Québec,
Canada), the dwarf form has evolved from populations of the Acadian
glacial lineage and extant normal populations are derived from the
Atlantic lineage (Pigeon et al., 1997; Lu et al., 2001). The dwarf ecotype
is hypothesized to have evolved in response to competition for limited
resources and ecological opportunity (Landry et al., 2007; Landry and
Bernatchez, 2010), and is a more active swimmer with a more
streamlined body, lower condition factor, higher active metabolic rate,
slower growth rate, earlier maturity, and more limnetic-like feeding
morphology than the ancestral-like, normal ecotype (Bernatchez et al.,
1999; Trudel et al., 2001; Rogers et al., 2002; Rogers and Bernatchez,
2005; Laporte et al., 2015; Laporte et al., 2016). Quantitative trait loci
associated with phenotypic divergence among ecotypes display evi-
dence of selection and further argue that these dwarf ecotypes have

the citric acid cycle and oxidative phosphorylation in red and white muscles than

normal fish.
white muscle glycolytic, glycogenolytic, glycogenic, oxidative phosphorylation, and

Yes — all dwarf whitefish populations have a higher percentage of red muscle, three
citric acid cycle enzyme activities among ecotypes.

citric acid cycle, and oxidative phosphorylation genes. Many glycolytic, citric acid
have a larger liver, and two have larger ventricles than sympatric normal

cycle, oxidative phosphorylation and fatty acid metabolism genes are under-
oxidative phosphorylation enzymes in the liver than normal fish. Gill size was
populations. Differences among lakes in the direction of variation in hepatic and

Yes — dwarf whitefish had smaller brains, larger livers, and higher activities of
similar among ecotypes.

Yes — dwarf fish had a higher percentage of red muscle, larger ventricle, higher
white muscle mitochondrial content and higher activities of enzymes involved in

expressed in malformed backcross embryos, indicating these loci are involved in

Yes — dwarf embryos had higher mRNA content of creatine kinase and glycolytic,
hybrid dysfunction.

Yes — differences in allele frequencies of creatine kinase and glycolytic,

gluconeogenic and oxidative phosphorylation genes.
Unknown — muscle — data on pure parental crosses not available.

Divergence in energy metabolism between dwarf and normal?
No — brain

varied among lakes.

. & £

§ = it

=1 4 =}
?é § °E‘ E’ evolved via natural selection (Rogers et al., 2002; Rogers and
E g 5 " " - Bernatchez, 2005, 2007; Bernatchez et al., 2010; Gagnaire et al., 2013a;
s g 3 5 . 3 g § Laporte et al., 2015).
g E % §£ _ % % % In the past decade, a combination of transcriptomic (Derome et al.,
s| & 23§ 5 5 £ 2006, 2008; St-Cyr et al., 2008; Whiteley et al., 2008; Jeukens et al.,
% '% %i Z = E E» 2 2009, 2010; Nolte et al.,, 2009; Renaut et al.,, 2009; Evans and
= O OSEE = = & Bernatchez, 2012; Filteau et al., 2013; Dion-Coté et al., 2014) and

genomic (Renaut et al., 2010, 2011; Hébert et al., 2013; Gagnaire et al.,
2013b; Laporte et al., 2015) studies have documented the molecular
variation associated with adaptive divergence between whitefish eco-
types. While hundreds of candidate genes have been detected, one
functional category consistently varies between ecotypes from multiple
different lakes in the St. John River Basin: central energy metabolism
(Tables 1, S1, S2; Bernatchez et al., 2010). This suggests that, as in
many other species, differences in energy metabolism are a key con-
tributor to local adaptation (e.g. Eanes, 2011; Zera, 2011; Marden,
2013; Cheviron et al., 2014).

Témiscouata dwarf & Alymer normal pure crosses (lab-
Témiscouata dwarf & Alymer normal pure crosses (lab-

Témiscouata dwarf & Alymer normal pure crosses and
Témiscouata dwarf & Alymer normal pure crosses and

Cliff, Indian, East & Témiscouata lakes (wild)

z 2 2
g S S
B ks k=
=
=] > b T
=] 17} @
et -";; g > > In particular, dwarf whitefish tend to have a higher white muscle
g - E E _;: _;: mRNA content of genes encoding glycolytic and glycogen metabolism
& B ES & = = enzymes and lower mRNA content of oxidative phosphorylation genes
g o 2 g g g than normal whitefish when reared under common laboratory condi-
é —E 585 ) ) tions (Derome et al., 2008; Jeukens et al., 2009; Nolte et al., 2009;
=4 <
§‘ % &S 8 g g Table 2). In liver, lab-reared dwarf whitefish also have higher glycolytic
- -
mRNA content than normal whitefish, but oxidative phosphorylation
& genes show little divergence (St-Cyr et al., 2008). Recently, Dalziel
g 3 o £ et al. (2015) found that the activities of oxidative phosphorylation
g B gy £ 2 enzymes in white muscle are higher in lab-reared dwarf whitefish than
g £ g g o . o .
R E = = 2 normal whitefish, opposite to findings for mRNA content in the same
; ES = . .
Y g 3 PR 5 &5 lab-reared populations (Derome et al., 2008; Nolte et al., 2009; Fig. 1).
7] = 2 2 < g
&4 \ ‘;: § § E = & E Furthermore, Laporte et al. (2016) found that the activities of hepatic
oxidative phosphorylation enzymes are higher in lab-reared dwarf than
s normal whitefish, despite little difference in mRNA content (Fig. 1).
s & 2 & S < This disparity between mRNA content and enzyme activity suggests
3 S g8 = g g g that translational or post-translational regulation may underlie the
§ ; = ; = = ; evolution of energy metabolism in Lake Whitefish (Suarez and Moyes,
g = = s 3
Slg| = ¢ ¢ O 2012)
I g 8 F : g 5 2 The primary goal of this study was to test if the activities of enzymes
“ < = < & = .. . . . . . .
.‘g 2 EF ‘E 8 = 8 participating in carbohydrate metabolism in the liver and white muscle
&

varied among ecotypes as predicted by differences in mRNA abundance
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Fig. 1. Summary of biochemical pathways measured in this
paper and associated studies (Dalziel et al., 2015; Laporte et al.,
2016). Enzyme names are in bold and italicized and those
measured in the lab-reared crosses used in this study in black
text (current paper, Dalziel et al., 2015, or Laporte et al., 2016)
and unmeasured enzymes in grey. Substrates are in plain text,
and pathway names are boxed. Many intermediates are omitted
and only the cytosolic isoform of phosphoenolpyruvate carbox-
ykinase (PEPCK), is displayed for clarity. Abbreviations are as
follows: hexokinase (HK), phosphoglucose isomerase (GPI),
phosphofructokinase (PFK), aldolase (ALDO), triosephosphate
isomerase (TPI), glyceraldehyde 3-phosphate dehydrogenase
(GAPDH), phosphoglycerokinase (PGK), phosphoglycerate mu-
tase (PGAM), enolase (ENO), pyruvate kinase (PK), lactate de-
hydrogenase (LDH), glucose 6-phosphatase (G6Pase), phos-
phoglucomutase (PGM), glycogen phosphorylase (PYG),
glycogen synthase (GYS), fructose 1,6-bisphosphatase (FBPase),
glycerol 3 phosphate dehydrogenase (GPD), glycerokinase (GK),
malate dehydrogenase (MDH), pyruvate carboxylase (PC), pyr-
uvate dehydrogenase complex (PDH), beta hydroxyacyl CoA
dehydrogenase (B-HOAD), cytochrome c oxidase (COX), citrate
synthase (CS). Candidate enzymes were chosen based upon prior
transcriptomic and genetic studies of Lake Whitefish dwarf and
normal ecotypes (reviewed in Table 1, S1 and S2).

Glucose
PYG
HK G6Pase (Liver only)  (Fig. 3)
Glucose glucose L Glveogen Glycogenolysis/
6-phosphate 1-phosphate '  G1yCOQ Glycogenesis
PGM GYS
GPI (Fig. 3)
(Fig. 2)
PFK FBase
(Fig. 2)
ALDO
/ (Fig. 2)
. 5 Glycerol Gluconeogenesis
o e adh Gieorol | Lipid metaboliom -+
- GK
(Fig. 3)
GAPDH
Fig. 2,
(Fig. 2) PGK
cMDH
PGAM Oxaloacetate 4ummmp malate Cytosol
cPEPCK
ENO
Bhoson | malate Mitochondrial matrix
osphoenol
pyruvate
PK Oxaloacetate LD
(Fig. 2) PC Citric Acid Cycle (e.g.. CS, MDH),
Acetyl- Electron Transport Chain (e.g. COX), &
Pyruvate CoA Fatty acid B-oxidation (e.g. 3-HOAD)
LDH (Dalziel et al. 2015; Laporte et al. 2016)
(Fig. 2)
Lactate

detected in prior studies (Tables 1, 2, S1, S2; Derome et al., 2008; St-Cyr
et al., 2008; Jeukens et al., 2009; Nolte et al., 2009). mRNA content was
measured in the same populations, but not the same individuals, in
which we measure enzyme activities. Therefore, this study focuses upon
population-level variation among ecotypes, not individual variation.
We also note that differences among ecotypes in gene expression and
enzyme activity vary among populations of wild Lake Whitefish eco-
types found at different points on the speciation continuum (Evans and
Bernatchez, 2012; Dalziel et al., 2017, Tables 1, S1 and S2); in this
paper we focus on a set of laboratory-reared dwarf and normal popu-
lations on which the majority of transcriptomic, genomic and quanti-
tative genetic studies have been conducted (reviewed by Bernatchez
et al., 2010; Bernatchez, 2016). Secondly, by rearing fish in a common
laboratory environment and varying their activity levels (Dalziel et al.,
2015; Laporte et al., 2016), we were able to test if differences in enzyme
activities are likely to be genetically based and characterize the extent
of phenotypic plasticity in glycolytic (i.e., GPI, PFK, ALDO, TPI, G-
APDH, PK, LDH), glycogenolytic (i.e., PYG) and glycogenic (i.e., GYS)
enzyme activities. Finally, we measured enzyme activities in red ske-
letal muscle, for which we have no prior gene expression data, to better
understand how different tissue-types contribute to divergence among
ecotypes (Trudel et al.,, 2001; Rogers et al, 2002; Rogers and
Bernatchez, 2005).

2. Materials and methods
2.1. Experimental families & swim-training methods

We studied Témiscouata Lake dwarf and Alymer Lake normal
whitefish bred and reared in the lab by Dalziel et al. (2015) and Laporte
et al. (2016). These fish are from the same populations used in prior
transcriptomic studies (Derome et al., 2006; St-Cyr et al., 2008; Jeukens

et al., 2009; Nolte et al., 2009), and reared under similar conditions in
the same facility at Université Laval, but are not the same individuals.
To make crosses, parents were caught in Témiscouata Lake (dwarf
whitefish, Acadian lineage, 47°36'N, 68°45'W) and Aylmer Lake
(normal whitefish, Atlantic lineage, 45°50’N, 71°26’W) and brought
back to the Laboratoire de Recherche en Sciences Aquatiques (LARSA,
Université Laval, Québec, Canada) for breeding. Gametes from multiple
females (seven to nine) and males (seven to fourteen) were mixed to
ensure the genetic background of these crosses was representative of
the populations. Crosses were made following the methods of Rogers
et al. (2002) and Nolte et al. (2009) and reared in a flow through system
under identical temperatures and lighting schedules, and fed Artemia
nauplii enriched with Selco and algae. To minimize genetically based
differences in body size among ecotypes (Rogers et al., 2002), and the
effects of allometric variation on enzyme activities (Moyes and
LeMoine, 2005), the normal cross was kept at a slightly higher density
than dwarf whitefish (but all tanks were < 0.8 kg/m?’) for the first
16 months of life, at which point fish were sampled. At the end of the
experiment 16-month old dwarf fish weighed 4.89g = 0.16 g and
were 857 cm = 0.10cm long, while 16 month old normal fish
weighed 5.06 g + 0.21 g, and were 8.06 + 0.12 cm long. There were
no significant differences in mass among groups (Dalziel et al., 2015),
but dwarf whitefish were more slender than normal whitefish as ex-
pected from genetically based differences in shape (Laporte et al.,
2015).

We also tested the effect of swim-training on enzyme activities. We
tested this variable because dwarf and normal whitefish show geneti-
cally based differences in the propensity for swimming, such that lim-
netic dwarf whitefish are more active swimmers than benthic normal
whitefish (Rogers et al., 2002). Furthermore, carbohydrate metabolism
enzymes often show phenotypic plasticity with exercise training in fish
(e.g. Martin-Perez et al., 2012). The swim-training experiment is more
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fully described in Dalziel et al. (2015) and Laporte et al. (2016) and
began when fish were ~ 16 months of age. We used 129 fish (64 dwarf
and 65 normal) and swam ‘trained’ fish for four to seven months, for 6 h
per day, at speeds of ~1.2-1.4 body lengths per second (BL/s). This
speed is approximately 33% of this species' critical swimming speed
based upon data from Bernatchez and Dodson (1985) and was chosen to
mimic the limnetic foraging of wild dwarf whitefish. Fish were ran-
domly assigned to ‘control’ or ‘swim-training’ tanks (dwarf and normal
whitefish combined) and all sampling and measurements were con-
ducted ‘blind’, as the two ecotypes cannot be easily distinguished by
morphology and were identified via genotyping after the experiment
was finished (described by Dalziel et al., 2015).

2.2. Sample collection

Full information on sample collection is given by Dalziel et al.
(2015). Briefly, after euthanizing fish we collected tissues for enzyme
assays by cutting a 3 mm thick muscle ‘steak’ ~3 mm posterior to the
cloaca with a razor blade. We then dissected the liver and removed the
gallbladder. All samples were immediately frozen in liquid nitrogen
prior to storage at — 80 °C. Red and white muscle fibres were separated
just prior to enzyme assays from frozen steaks (see next section). All
protocols were approved by Université Laval's animal care committee
(Protocol 82178).

2.3. Activities of metabolic enzymes in skeletal muscles and liver

2.3.1. Sample preparation

We measured enzyme activities in red and white muscle samples
isolated from frozen steaks and whole livers. See Supplementary Tables
S3-S5 for sample sizes for each tissue, which ranged from 6 to 16 in-
dividuals per experimental treatment (ecotype and swim-training
treatment) per tissue. Glycolytic enzymes and creatine phosphokinase
were measured in tissues homogenized in 20 volumes (white muscle
and liver) or 60 volumes (red muscle) of chilled buffer following Moyes
et al. (1997) and Martinez et al. (2006). This included the enzymes:
phosphoglucose isomerase (GPI, EC 5.3.1.9), phosphofructokinase
(PFK, EC 2.7.1.11), aldolase (ALDO, EC 4.1.2.13), triosephosphate
isomerase (TPI, EC 5.3.1.1), glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH, EC 1.2.1.12), pyruvate kinase (PK, EC 2.7.1.40),
lactate dehydrogenase (LDH; EC 1.1.1.27), and creatine phosphokinase
(CPK, EC 2.7.3.2). Glycolytic enzymes and CPK from white muscle were
measured from — 80 °C frozen homogenates from Dalziel et al. (2015)
and liver glycolytic enzymes were measured in new homogenates
frozen prior to assays to match freeze/thaw conditions.

Enzymes participating in glycogenesis, glycogenolysis and glycerol
metabolism were measured in liver and white muscle samples only (not
red muscle). We measured the activities of active and total glycogen
phosphorylase (PYG; 2.4.1.1), active and total glycogen synthase (GYS;
EC 2.4.1.11), and glycerol 3 phosphate dehydrogenase (GPD; EC
1.1.1.8) following the methods of Milligan (2003) and Driedzic et al.
(2006) with some modifications. Specifically, samples were homo-
genized in 4 mL Wheaton glass homogenizers kept at on ice with 10
volumes of buffer (50 mmol~ ! imidazole, 5mM EDTA, 5 mM EGTA,
5 mM DTT, 1 mM Roche Pefabloc SC, 1 X Roche PhosSTOP, pH 7.5),
with DTT, phosphatase inhibitors, and protease inhibitors added just
prior to use.

2.3.2. Enzyme assays

All assays were optimized to ensure that substrates, cofactors, and
linking enzymes were not limiting and were conducted at 26 °C with a
96 well plate spectrophotometer (Spectramax 190, Molecular Devices,
Sunnyvale, CA, USA). All samples were assayed in triplicate, and
background reaction rates were subtracted. Tissue protein content was
measured in quadruplicate on all samples with Bradford Reagent and a
protein standard curve composed of bovine serum albumen (Sigma-
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Aldrich).

Final reaction concentrations for GPI, PFK, PK, LDH, and CPK are
described by Dalziel et al. (2015). Final reaction concentrations for
ALDO were 10 mM KCl, 0.2 mM NADH, 5 U/mL GPD, 14.5 U/mL TP,
and 0.75 mM fructose 1,6-bisphosphate in 100 mM Hepes, pH 7.4. The
TPI reaction was conducted in 10 mM KCI, 0.2 mM NADH, 10 U/mL
GPD, 2.9 mmol glyceraldehyde 3-phosphate in 100 mM Hepes, pH 7.4,
and GAPDH with 10 mM KCl, 2 mM MgCl,, 3.1 mM ATP, 0.2 mM
NADH, 8 U/mL PGK, and 2.8 mM phosphoglycerate in 100 mM Hepes,
pH 7.4. PYG was measured in the presence of 15 mM MgSO,4, 0.5 mM
DTT, 0.5 mM NADP, 0.25 mM EDTA, 1 U/mL glucose-6-phosphate de-
hydrogenase, 1.5 U/mL phosphoglucomutase, 0.01 mM glucose 1,6-bi-
sphosphate, 2 mg/mL glycogen, in 50 mM potassium phosphate,
pH 7.3. GYS was measured with 70 mM KCl, 4 mM MgCl,, 0.5 mM PEP,
0.2 mM NADH, 5 U/mL LDH, 5 U/mL PK, 2 mg/mL glycogen in 50 mM
Tris, pH 7.8. Cytoplasmic GPD was measured with 0.15 mM NADH, and
2 mM DHAP in 50 mM imidazole, pH 7.2.

2.4. Statistical tests and comparisons to studies of mRNA content

All statistical analyses were conducted with R v3.1.1 (R
Development Core Team, 2014). In cases where there was a significant
effect of size on enzyme activities we used the residuals from the best-fit
least-squared linear regression against mass in subsequent analyses. To
test the effects of ecotype (fixed effect, dwarf or normal) and treatment
(fixed effect, swim-trained or control) we ran a mixed effects linear
model using the nlme package in R with tank nested as a random effect
(two-way nested ANOVAs; Pinheiro et al., 2015). All plots were created
with ggplot2 (Wickham, 2009). We qualitatively compare our enzyme
activity data to previously collected mRNA content measured in white
muscle and liver of adult fish (> three years old) and whole-juveniles
(four months old) from the same populations (Alymer normal and Té-
miscouata dwarf) reared in the same facility at Université Laval
(Table 2: Derome et al., 2008; St-Cyr et al., 2008; Jeukens et al., 2009;
Nolte et al., 2009). All comparisons of enzymes and mRNA are at the
population level and not among individual fish. Transcriptomic data
from lab-reared embryos, juveniles and adults and other populations of
adult whitefish collected from the wild are summarized in the supple-
mental material (Tables S1, S2; Derome et al., 2006, 2008; St-Cyr et al.,
2008; Jeukens et al., 2009, 2010; Nolte et al., 2009; Renaut et al., 2009,
2010; Whiteley et al., 2008; Evans and Bernatchez, 2012; Jeukens and
Bernatchez, 2012; Filteau et al., 2013; Gagnaire et al., 2013a, 2013b;
Hébert et al., 2013; Dion-Coté et al., 2014; Dalziel et al., 2017).

3. Results
3.1. Activities of metabolic enzymes

3.1.1. White and red muscle

All seven glycolytic enzymes had higher activities in dwarf white
muscle than normal white muscle when expressed per mg muscle
protein (Fig. 2) and per g tissue (Table S3). A similar trend was found in
red muscle, but the difference between ecotypes was much smaller and
only phosphoglucose isomerase had a significantly higher activity in
dwarf than normal whitefish after differences in total muscle protein
content were taken into account (Fig. 2; Table S4; protein content
measured by Dalziel et al., 2015). The white muscle of dwarf whitefish
also contained higher total activities of glycogen phosphorylase, gly-
cogen synthase, and glycerol 3-phosphate dehydrogenase, than normal
whitefish (Fig. 3 and Table S3). The latter 3 enzymes were not mea-
sured in red muscle. We found no effect of training on any muscle en-
zymes after accounting for differences in tissue protein content (Figs. 2,
3, Tables S3, S4).

3.1.2. Liver
In liver, five of the seven measured glycolytic enzymes differed
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significantly between ecotypes. However, the direction of variation was
enzyme-specific; some of these enzymes were more active in dwarf
whitefish livers while others had higher activities in normal whitefish
livers (Fig. 2). With respect to hepatic glycogen metabolism, dwarf
whitefish had slightly, but not significantly, higher activities of total
glycogen phosphorylase (p = 0.09), while glycogen synthase did not
differ between ecotypes (Fig. 3). There were no differences in hepatic
glycerol 3 phosphate dehydrogenase activity among ecotypes (Fig. 3).
We found no effect of training on any hepatic enzymes after accounting
for differences in tissue protein content (Figs. 2, 3, Table S5).
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Liver Fig. 2. Activities of glycolytic enzymes in the skeletal
100 muscles and liver of dwarf (white circles) and normal
! c ns (black circles) whitefish reared in the laboratory under
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3.2. Variation in enzyme activities and mRNA content between ecotypes

We compared differences in enzyme activities per gram tissue be-
tween ecotypes to previously measured differences in mRNA content
per total RNA in liver and white muscle of lab-reared whitefish (Derome
et al., 2008; St-Cyr et al., 2008; Jeukens et al., 2009; Tables 1 and 2).
We note that enzyme activities and mRNA content were measured in
different individuals from the same populations (Alymer normal and
Témiscouata dwarf), so all comparisons are at the population level. We
also compared our white muscle enzyme activities to differences in
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Fig. 3. Enzyme activities of (A) glycogen phosphorylase (PYG), glycogen synthase (GYS), and (B) glycerol 3-phosphate dehydrogenase (GPD) in white muscle and liver of dwarf (white
circles) and normal (black circles) whitefish reared in the laboratory under control conditions (control) or with swim-training (swim). Enzymes not measured in this study are noted in
grey and many pathway components are excluded for clarity. Additional abbreviations: phosphoglucomutase (PGM), UDP-glucose pyrophosphorylase (UGP), glycerol kinase (GK), no

significant differences (ns). Results are presented as in Fig. 2, with full statistical results, sample sizes (9-16 individuals per group per tissue) and data expressed per g tissue ™ *

Supplementary Tables S3-S5.

muscle-specific isoform expression of lab-reared, whole-juvenile dwarf
and normal whitefish (Nolte et al., 2009). Measures of mRNA content
and enzyme activities from other, wild-caught sympatric pairs of eco-
types are summarized in Tables S1 and S2 to assess convergence among
independently evolved pairs.

3.2.1. White muscle

We found that some differences in mRNA content among ecotypes
in adult white muscle (Derome et al., 2006; Jeukens et al., 2009),
predicted enzymatic differences among ecotypes. Namely, white muscle
pyruvate kinase and lactate dehydrogenase mRNA content and enzyme
activities were both higher in dwarf than normal whitefish (Table 2).
Alternatively, there were no differences in mRNA content (Derome
et al., 2008), but significant differences in enzyme activities among
ecotypes for phosphoglucose isomerase, phosphofructokinase, triose-
phosphate isomerase, glyceraldehyde 3-phosphate dehydrogenase, and
glycogen phosphorylase. No mRNA content data for the muscle iso-
forms of aldolase and glycogen synthase or the mitochondrial glycerol 3
phosphate dehydrogenase isoform was available as probes for these
genes were not on the microarray used by Derome et al. (2008) (von
Schalburg et al., 2005).

We also compared differences in whole-juvenile whitefish mRNA
content of muscle-specific isoforms (Nolte et al., 2009) to white muscle
enzyme activities among ecotypes, as > 50% of tissue is normally white
muscle in fish (Johnston et al., 2011). The whole juvenile fish studied
by Nolte et al. (2009) were at a more similar life stage to our experi-
mental fish and their mRNA content was found to be a good predictor of
ecotype differences in enzyme activities in our white muscle samples. In
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particular, juvenile dwarf whitefish had higher mRNA content and
enzyme activities for all measured glycolytic and glycogenolytic en-
zymes, including the muscle specific isoforms for phosphofructokinase,
aldolase, pyruvate kinase, and glycogen phosphorylase (Table 2). The
only enzyme for which mRNA content did not predict the direction of
change between dwarf and normal whitefish was the glycerol 3 phos-
phate dehydrogenase cytoplasmic isoform, which showed no variation
in mRNA content but higher enzymatic activities in dwarf whitefish.
Differences in enzyme activity (1.4-2.4 X higher in dwarf when ex-
pressed per mg protein) were generally greater than differences in
mRNA content (1.2-1.6 X higher in dwarf when expressed per g total
RNA) among ecotypes (Table 2).

3.2.2. Liver

In contrast to white muscle, divergence among ecotypes in hepatic
glycolytic and glycogenolytic mRNA content did not effectively predict
variation in carbohydrate metabolism enzyme activities (Table 2). St-
Cyr et al. (2008) found a higher mRNA content for aldolase (both
muscle and liver isoforms) and glyceraldehyde 3-phosphate dehy-
drogenase, but we found enzyme activities to be higher in normal
whitefish (Fig. 2, Table 2). Furthermore, St-Cyr et al. (2008) found no
differences between ecotypes in the mRNA content of phospho-
fructokinase, pyruvate kinase, lactate dehydrogenase and glycogen
phosphorylase, while we found higher enzyme activities in dwarf
whitefish for phosphofructokinase, pyruvate kinase and glycogen
phosphorylase and lower activities of lactate dehydrogenase (Figs. 2, 3,
Table 2). Finally, we detected no difference in glycerol 3 phosphate
dehydrogenase, while St-Cyr et al. (2008) found a lower mRNA content
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Table 2
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mRNA content and enzyme activities of carbohydrate metabolism genes in adult tissues and whole-juvenile lab-reared whitefish (Témiscouata dwarf and Alymer normal ecotypes).
mRNA abundances were measured with the 3.7 K salmonid microarray (Rise et al., 2004; Derome et al., 2006), 16 K salmonid microarray (von Schalburg et al., 2005; Derome et al.,
2008; St-Cyr et al., 2008) or RT-PCR (Jeukens et al., 2009) and normalised to total RNA. Data are presented as dwarf/normal values; values > 1 are higher in dwarf fish (in bold),
while values < 1 are higher in normal fish (italicized). Relevant tissue-specific isoforms are in black, while other isoforms are in grey. An ‘?” indicates values were not measured and
‘ns’ indicates that there was no significant difference in activity/abundance. Data from multiple probes for the same gene are presented as averages, except when trends varied among
probes. Gene names follow conventions for humans. Data for gene expression and genetic divergence in wild populations are summarized in Tables S1 and S2.

Pathway Enzyme Enzyme activity/ | Enzyme activity/ | Gene mRNA content/ mRNA content/ total
mg protein g tissue total nRNA mRNA
(Dwarf/Normal) (Dwarf/Normal) (Dwarf/Normal); (Dwarf/Normal);
Adult tissue ¥ Whole juveniles
WHITE MUSCLE
Glycolysis Phosphoglucose isomerase (GPI) 1.8 24 GPI ns” 1.2
Phosphofructokinase (PFK) 24 3.3
PFK-M (muscle) ns " 1.2
Aldolase (ALDO) 2.2 3.0 ALDO-A (muscle) 2@ 1.6
Triose phosphate isomerase (TPI) 1.8 24 TPI ns P 1.5
Glyceraldehyde 3-phosphate 2.2 3.0 GAPDH ns " 1.5
dehydrogenase (GAPDH)
Pyruvate kinase (PK) 2.2 2.9 PK-M (muscle) 11D 14
Lactate dehydrogenase (LDH) 1.6 2.2 LDH-A (muscle & liver) 2™ 1.6 ?
Glycogenolysis Glycogen phosphorylase (PYG) - 14 1.9 PYG-M (muscle) ns " 1.3
total
Glyconeogenesis Glycogen Synthase (GYS) — total 2.2 2.8 GYS-1 (muscle) ? ?
Linking Glycerol 3-phosphate 1.8 2.6 GPD]1(cytoplasmic) ns ™ ns
carbohydrate and dehydrogenase, cytoplasmic (GPD) GPD2 (mitochondrial) ? ?
lipid metabolism
LIVER
Glycolysis Phosphoglucose isomerase (GPI) ns ns GPI ns @
Phosphofructokinase (PFK) 1.3 1.2 PFK-B/L (liver) ns @
Aldolase (ALDO) 0.8 0.8
ALDO-B (liver, CB502483) 13
ALDO-B (liver, CA062426) ns ?
Triose phosphate isomerase (TPI) ns ns TPI ns @
Glyceraldehyde 3-phosphate 0.9 0.9 GAPDH 1.3-1.79
dehydrogenase (GAPDH)
Pyruvate kinase (PK) 1.4 1.3
PK-L,C (liver & erythrocyte) ns @
Lactate dehydrogenase (LDH) 0.9 0.9 LDH-A (muscle & liver) ?
Glycogenolysis Glycogen phosphorylase (PYG or ns 1.2
PYG) - total
PYG-L (liver) ?
Glyconeogenesis Glycogen Synthase (GYS or GYS) ns ns
- total GYS-2 (liver) ?
Linking Glycerol 3-phosphate ns ns GPDI (cytoplasmic) 0.7%
carbohydrate and | dehydrogenase, cytoplasmic (GPD) GPD2 (mitochondrial) ?
lipid metabolism

References: (1) Derome et al. (2008), (2) St-Cyr et al. (2008), (3) Jeukens et al. (2009), (4) Nolte et al. (2009).

in dwarf whitefish (Fig. 3, Table 2). The two genes for which St-Cyr
et al.'s (2008) hepatic mRNA content and our enzyme activities agreed
were phosphoglucose isomerase and triosephosphate isomerase, for
which no differences in activity or mRNA content were detected
(Table 2).

4. Discussion

Transcriptomic studies are commonly used to survey the molecular
variation underlying phenotypic divergence in natural populations
(Alvarez et al., 2015). However, not all transcriptomic variation influ-
ences phenotypes at higher levels of biological organization, so it is
important to test if differences in mRNA content are associated with
corresponding changes in protein content or enzyme activity (reviewed

by Diz et al., 2012). The best way to test for an effect of transcriptomic
divergence is to directly manipulate mRNA abundance in a controlled
genetic background (e.g. RNAi, morpholinos; reviewed by Dalziel et al.,
2009; Pardo-Diaz et al., 2015). However, this may not be possible when
specific loci are not known, adaptation is polygenic, or organisms are
not amenable to genetic manipulations, as is the case with Lake
Whitefish (see Bernatchez, 2016). Therefore, we tested if previously
detected transcriptomic variation (Derome et al., 2008; St-Cyr et al.,
2008; Jeukens et al., 2009; Nolte et al., 2009) between lab-reared dwarf
and normal whitefish leads to corresponding changes in enzyme ac-
tivity between ecotypes from the same populations. We found: 1) dwarf
whitefish have higher white muscle activities of all measured enzymes
of glycolytic and glycogen metabolism than normal whitefish and that
some of these vary as predicted by prior transcriptomic studies in
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whitefish from a variety of age classes from the same populations, 2)
differences in carbohydrate metabolism enzyme activities among eco-
types in red muscle follow similar trends, but are much lower than in
white skeletal muscle, 3) hepatic activities of glycolytic and glycogen
metabolism enzymes vary in an enzyme-specific manner between eco-
types and enzyme activities do not vary as predicted from tran-
scriptomic surveys in adult fish from the same populations, and 4)
differences in hepatic and muscle enzyme activities in these populations
of dwarf and normal whitefish are genetically based (present in lab-
bred and reared fish), and do not vary with moderate swim-training.

4.1. Do mRNA content and enzyme activity vary among ecotypes in a
similar fashion?

Prior transcriptomic studies of lab-reared adult whitefish (> 3 years
old, ~23-29 cm fork length) found that glycolytic mRNA content was
higher in white muscle and liver of dwarf than normal whitefish
(Derome et al., 2008; St-Cyr et al., 2008; Jeukens et al., 2009). Simi-
larly, in whole lab-reared juveniles (4 months old, ~0.8 g, fork length
not measured, body composition similar to adult fish) glycolytic and
glycogenolytic mRNA content was higher in dwarf compared to normal
whitefish (Nolte et al., 2009). Because these transcriptomic studies
predate our work, and samples are no longer available, we could not
measure enzyme activities in tissues from the same individuals; hence
our goal was to test for evolutionary divergence among ecotypes at the
population-level in our 16 month old juvenile fish (~5-9 cm fork
length, ~5 g Dalziel et al., 2015; Laporte et al., 2016). It is possible that
allometric variation due to differences in the age and size of the in-
dividuals used in prior transcriptomic and our enzymatic studies has
occurred as glycolytic enzyme activities and mRNA content often show
positive scaling with body size in fishes (Moyes and LeMoine, 2005).
However, unless scaling varies between ecotypes, dwarf and normal
whitefish should be subject to similar levels of scaling. With respect to
measures in whole-juvenile whitefish (Nolte et al., 2009), we accounted
for differences in tissue content (pure muscle vs. whole-juveniles) by
only comparing muscle-specific isoform gene expression.

Finally, we note that we measured maximal enzyme velocity (Viax),
which is the product of enzyme concentration ([E]) and turnover
number (catalytic events per active site per unit time, k.,.). Thus, if the
coding regions of carbohydrate metabolism genes have evolved differ-
ences in k., the link from protein content to enzyme activity may differ
among ecotypes. Furthermore, evolutionary variation in translational
or post-translational regulation may also change the relationship from
mRNA content to enzyme activity among ecotypes, leading to mismatch
in the ratios dwarf/normal mRNA content and enzyme activity.

4.1.1. White muscle

We found that two of seven genes (PK and LDH) had both a higher
mRNA content (Derome et al., 2008; Jeukens et al., 2009) and higher
white muscle enzyme activity in dwarf versus normal whitefish, sug-
gesting that their activities are transcriptionally regulated. The five
other glycolytic genes showed no difference in mRNA content among
ecotypes in adult white muscle (Derome et al., 2008), but higher en-
zyme activities in dwarf than normal whitefish, arguing for a role of
post-transcriptional regulation. However, if allometric scaling varies
between dwarf and normal ecotypes or divergence in expression only
occurs at specific life-stages the comparisons of adult mRNA content to
enzyme activity in juveniles may not be appropriate. Indeed, diver-
gence in muscle-isoform specific, whole-juvenile, carbohydrate meta-
bolism gene expression (Nolte et al., 2009) is greater than gene ex-
pression divergence among ecotypes in adult muscle (Derome et al.,
2008). We found strong concordance between the dwarf/normal ratios
of mRNA content from four month old whole-juvenile fish (Nolte et al.,
2009) and of enzyme activities in white muscle of our 16 month old fish
for all possible comparisons of glycolytic genes and glycogen phos-
phorylase; in all cases, dwarf whitefish had higher mRNA content and
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enzyme activities.

For all genes showing corresponding divergence in enzyme activ-
ities and mRNA content among ecotypes in either adult muscle or
whole-juvenile samples the divergence in enzyme activities was larger
than that in mRNA content. This could indicate that further transla-
tional or post-translational mechanisms amplify any transcriptomic
variation. However, enzyme activities and mRNA content are expressed
relative to different denominators in these studies (total protein and
total RNA, respectively), so variation in the amount of total RNA per mg
protein needs to be taken into account to determine which regulatory
steps contribute to differences in enzyme activities (e.g. Dalziel et al.,
2005; Martin-Perez et al., 2012).

4.1.2. Liver

In contrast to white muscle, liver gene expression in adult whitefish
(St-Cyr et al., 2008) did not predict enzyme activity variation among
ecotypes for any genes, suggesting that transcriptomic variation does
not contribute to divergence in hepatic enzyme activities. It is possible
that this discordance is due to individual variation in mRNA content
and enzyme activities, but since genetically-based divergence in hepatic
enzyme activities between ecotypes were larger than variation within
ecotypes this does not seem likely. Unfortunately, we used all hepatic
tissues for enzyme assays so cannot directly test this hypothesis by
measuring mRNA content in the same individuals. Another possibility is
that divergence among ecotypes varies at different ages or sizes, as was
found for gene expression in white muscle (Derome et al., 2008 vs.
Nolte et al., 2009).

It is also possible that variation in the coding regions of these genes
may influence enzyme activities (Vi,ax, @ combination of enzyme con-
centration and specific activity) such that differences in specific ac-
tivity, and not enzyme concentration, underlie differences in activity
between ecotypes. Previous genomic studies have found evidence for
genetic divergence in metabolic genes, but these SNPs were primarily
detected in non-coding regions, arguing that regulatory variation is
more important for the evolution of enzymes in energy metabolism
among whitefish ecotypes (Renaut et al., 2010, 2011; Hébert et al.,
2013). A further examination of the full coding regions of glycolytic/
glycogen metabolism genes is required to fully evaluate this hypothesis,
but the concordance between mRNA content and activity in isoforms
and genes that are also expressed in white muscle (e.g. GPI, TPI, G-
APDH, LDH-A) argues that this is not likely the major mechanism
leading to transcriptomic and enzymatic discordance. Finally, it is
possible that translational or post-translational mechanisms buffer
variation in mRNA content among ecotypes (e.g. GPD), and lead to
previously undetected divergence (e.g. PFK, PK, LDH, PYG) or reverse
the effects of mRNA variation (e.g. ALDO, GAPDH).

Transcriptional regulation is clearly an important mechanism un-
derlying the evolution of phenotypic traits (Wray, 2007), but recent
proteomic studies have found that regulatory processes at other levels
of biological variation are also critical (Diz et al., 2012; Albert et al.,
2014; Bauernfeind et al., 2015). For example, much variation in global
protein content is explained by factors other than mRNA content (Vogel
and Marcotte, 2012). While about 50-85% of genes show a positive
correlation between mRNA and protein levels, normally < 30% of
variation is explained, suggesting translational/post-translational me-
chanisms also contribute to evolutionary variation in protein content
(e.g. Ghazalpour et al., 2011; Skelly et al., 2013; Battle et al., 2015).
These correlations among mRNA and protein levels vary widely among
tissues, cellular components and functional categories of genes (e.g.
Ghazalpour et al., 2011; Skelly et al., 2013; Wu et al., 2013; Wang et al.,
2015; Rokyta et al., 2015). Therefore, our finding that differential en-
zyme activity has likely evolved via transcriptional mechanisms in
white muscle, and translational/post-translational mechanisms in liver
is plausible. Furthermore, while glycolytic genes are well-known to be
transcriptionally regulated, there is also substantial translational and
post-translational control (reviewed by Pilkis and Granner, 1992;
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Desvergne et al., 2006; Dang et al., 2008; Tripodi et al., 2015). Indeed,
evidence for post-transcriptional control of glycolytic protein content
during local adaptation has been found for heart ENO and GAPDH by
Rees et al. (2011) in Fundulus heteroclitus populations.

4.2. Do enzymes within a biochemical pathway co-vary among ecotypes?

Pathway flux can evolve as a result of catalytic or regulatory dif-
ferences in single enzymes (e.g. Olson-Manning et al., 2013, 2015) or a
few enzymes that have majority flux control (e.g. Eanes, 2011;
Lavington et al., 2014). Flux may also evolve as the result of variation
in ‘master’ regulatory factors controlling the expression or activity of all
pathway genes (e.g. hypoxia inducible factor 1 co-regulates glycolytic
gene expression during hypoxia; Semenza, 2011). By measuring the
activities of seven of the eleven enzymes in glycolysis, we were able to
determine if changes in enzyme activity among dwarf and normal
whitefish occurred in only a few (indicating changes in enzyme specific
coding regions or regulatory evolution), or in many glycolytic enzymes
(co-variation, suggesting the evolution of a trans-regulatory factor in-
fluencing the whole pathway).

In the white muscle, all seven glycolytic enzymes had ~2 fold
higher activities in dwarf than normal whitefish. Dwarf whitefish also
had higher total activities of glycogen metabolism enzymes (GYS, PYG)
and an enzyme coordinating carbohydrate and fat metabolism (GPD).
The evolutionary up-regulation of all measured enzymes, including
those known to operate near capacity during exercise, such as PYG
(Eanes et al., 2006), indicates that dwarf whitefish have evolved a
higher potential for carbohydrate metabolism. Nolte et al.'s (2009)
finding that juvenile dwarf whitefish also have a higher mRNA content
of many of these genes compared to normal whitefish suggests that
variation in transcriptional ‘master regulator(s)’ may underlie evolu-
tionary divergence in carbohydrate metabolism in white muscle. In-
deed, expression quantitative trait locus studies (eQTL) in Lake
Whitefish white muscle have mapped expression ‘hotspots’ for genes
involved in glycolysis (GAPDH, PK, TPI) and carbohydrate metabolism
(GPD) (Derome et al., 2008). The identity of these eQTL loci remains to
be determined.

In liver, there was divergence in many glycolytic enzymes between
the two ecotypes, but these enzymes did not show a coordinated pattern
of divergence as in white muscle. In particular, normal whitefish had
higher activities of three glycolytic enzymes (ALDO, GAPDH, and LDH),
dwarf whitefish had higher activities of two enzymes (PFK and PK), and
two enzymes did not vary among ecotypes (TPI and GPI). These find-
ings, in combination with a lack of correspondence between mRNA
content and enzyme activities in liver, suggest that enzyme-specific
coding regions or translational/post-translational mechanisms may
have led to evolutionary divergence. These differences in regulation
among enzymes within a pathway make it difficult to predict the cu-
mulative effects, if any, on glycolytic pathway flux. We do note that
some of these enzymes, including ALDO, GAPDH, and LDH, are re-
versible enzymes that catalyze both glycolytic and ‘reverse’ gluconeo-
genic reactions. ALDO, GAPDH, and LDH are more highly expressed in
normal whitefish, while PFK and PK, which act only in glycolysis, are
more highly expressed in dwarf whitefish. Furthermore, PFK is a classic
‘non-equilibrium’ enzyme regulated via allosteric modulators and
thought to exert strong control over glycolysis (reviewed by Hochachka
and Somero, 2002). Based upon these observations we hypothesize that
dwarf whitefish have a higher per gram capacity for hepatic glycolysis,
but that normal whitefish may have a higher per gram hepatic capacity
for gluconeogenesis.

Current data regarding the expression of gluconeogenic-specific
genes in these populations are equivocal: St-Cyr et al. (2008) found no
differences in the hepatic mRNA content of fructose 1,6-bisphosphatase
(FBPase) or cytoplasmic phosphoenolpyruvate carboxykinase
(cPEPCK), and the microarray used in that study lacked probes for the
mitochondrial PEPCK (mPEPCK), glucose 6-phosphatase (G6Pase), and
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pyruvate carboxylase (PC). Jeukens et al.'s (2010) RNA-seq study of the
livers of wild whitefish from Cliff Lake found that FBPase-2 was higher
in normal whitefish livers, but mPEPCK and G6Pase were higher in
dwarf whitefish livers. Gluconeogenic enzymes display transcriptional,
post-transcriptional, translational and post-translational regulation, so
overall hepatic gluconeogenic capacity should be compared among
ecotypes in future experiments to test the hypothesis that normal
whitefish have a higher hepatic capacity for gluconeogenesis (Enes
et al., 2009; Jitrapakdee, 2012). Furthermore, Laporte et al. (2016)
found that dwarf whitefish have a relatively larger liver than normal
whitefish, which should accentuate increases in hepatic glycolytic ca-
pacity in dwarf whitefish, but might cancel out potential tissue-specific
increases in gluconeogenic capacity in normal whitefish when whole-
liver metabolic capacity is measured.

4.3. Which tissues show energetic divergence among dwarf and normal
ecotypes?

Studies of whole-animal behaviour and metabolism have found that
dwarf whitefish are more active swimmers with a higher active meta-
bolic rate that grow more slowly and mature earlier than normal
whitefish (Trudel et al., 2001; Rogers et al., 2002; Rogers and
Bernatchez, 2005). To help determine how individual tissues contribute
to variation in whole-animal metabolism we compared liver, white
muscle and red muscle. We found that dwarf whitefish have higher
activities of carbohydrate metabolism enzymes in white muscle, that
differences in the activities of glycolytic enzymes also evolved in liver,
but that there was little divergence in red muscle. These data agree with
our previous work finding substantial divergence in the activities of
aerobic energy metabolism enzymes in white muscle and liver, but less
variation in red muscle (Dalziel et al., 2015; Laporte et al., 2016). In-
stead it seems that divergence in the oxidative red muscle occurs via
changes in the relative proportions of this fibre-type relative to white
muscle, as dwarf whitefish have a higher percentage of red muscle
(Dalziel et al., 2015, 2017).

Previous studies on other metabolically active tissues, such as brain
and heart, also indicate that divergence in size and/or energy meta-
bolism has occurred. In particular, normal whitefish more highly ex-
press genes involved in energy metabolism in the brain and have a
larger normalised brain size (Whiteley et al., 2008; Laporte et al., 2016,
but see Evans et al., 2013), while dwarf whitefish have larger normal-
ised ventricles and show little divergence in energetic enzyme activities
per mg heart protein (Evans et al., 2013; Dalziel et al., 2015, 2017).
Together, these physiological studies show that changes in whole-an-
imal metabolism between dwarf and normal ecotypes are associated
with variation in the size of the brain, heart, liver and red muscle as
well as changes in the activities of aerobic energy metabolism, glyco-
lysis, glycogenolysis, and glycogenesis per gram tissue in white muscle,
liver and brain.
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